
Heat transfer in a tapered passage 
Yasuaki Shiina* 

Heat transfer to laminar flow in tapered passages is studied for two types of thermal 
boundary conditions: prescribed heat flux on both walls, and on one wall with the other wall 
adiabatic. In the analysis, the flow is assumed to be purely radial. Temperature distributions 
and Nusselt number are obtained for the heat flux q oc r a. The Nusselt number depends on 
Reynolds number and taper angle. The fully developed Nusselt number decreases with 
increase in 6 for converging flow and increases for diverging flow. Constant heat flux 
boundary conditions, 6 =0, for converging flow yield a reduction in Nusselt number when 
compared with the case of parallel channel flow. 
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I n t roduct ion  

Laminar heat transfer in channels has been studied by many 
investigators since Graetz obtained a solution for flow in a 
circular pipe with constant wall temperature. A lot of effort has 
been devoted to the study of heat transfer in passages of constant 
cross-section, such as a circular pipe 1, a parallel channel 2, and 
annulus a and other configurations 4,s. 

Laminar heat transfer in passages of longitudinally varying 
cross-section may be different from that in the case of constant 
cross-section. Walker and Rishehri 6 suggested that the 
boundary condition of constant heat flux brought about a lower 
Nusselt number for sink flow than for parallel channel flow. For  
the case of turbulent heat transfer with constant wall heat flux in 
a convergent channel preceded by a parallel channel, it was 
reported that the Nusselt number became lower in the 
convergent channel than in the parallel channel 7'8. This 
decrease in Nusselt number may be caused not only by 
laminarization due to flow acceleration but also by the 
characteristics of the thermal boundary condition of the flow in 
tapered passages. Therefore, basic study of laminar heat transfer 
in a tapered passage may aid our understanding of turbulent 
heat transfer in accelerated flow, or heat transfer in passages of 
varying cross-section. 

Few papers have dealt with laminar heat transfer in tapered 
passages. Millsaps and Pohlhausen 9 solved the momentum and 
energy equations in tapered passages, but their study was not 
concerned with the heat transfer from the walls. The first 
analysis known to the author is that of Sparrow and Starr 1°. 
They obtained fully developed Nusselt numbers with wall heat 
flux q ocl /r  and constant wall temperature using an 
approximate solution of the flow profiles. Their results show a 
higher Nusselt number for converging flow and a lower Nusselt 
number for diverging flow than for parallel channel flow. Yang 
and Price 1~ obtained numerical solutions of velocity 
distributions and an average Nusselt number for uniform wall 
temperature and uniform inlet velocity. Dey and Nath 12 
presented the temperature profiles in a thermal boundary layer 
of a convergent channel using a boundary-layer-type velocity 
profile, and indicated that one could expect higher heat transfer 
rates in convergent channel flow with constant wall 
temperature. 

In the present study, heat transfer to laminar flow in tapered 
passages is solved with prescribed wall heat flux on both walls 
and on one wall with the other wall adiabatic. The method was 
then extended to determine the fully developed Nusselt number 
for the case of constant wall temperature. 
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V e l o c i t y  prof i les 

The polar coordinate (r, 0) geometry of the system is illustrated 
in Fig 1. Assuming that the flow is purely radial in a tapered 
passage with angle 2~t, the velocity component (vr, v0) will be 
v,=u(r,O) and v0=0. The conservation laws for mass and 
momentum are written as follows: 

1_ d(ru) = 0 
r dr 

du_  I dp /d2u 1 du 1 d2/A U) 
/A ar par  ~-V~Tr~+rTr+ r 2 dO s # j  (1) 

1 dp 1 d/A 
0= ~-v 

pr dO r 2 dO 

From the mass conservation equation, one can set 

vf(O) 
u = (2) 

r 

The sign of u is taken as positive for outflow and negative for 
inflow. We introduce the mean velocity Um and dimensionless 
velocity g(O) normalized by u m: 

1 ~'+= 
IA m = - -  j_= urdO (3a) 

2ra 

g(O) = u/u m (3b) 

We also introduce the variable ~ = 0/ct and the Reynolds number 
based on the local mean velocity and twice the local channel 
width 

umD /Am4rO~ 
Re - (3c) 

v v 

Elimination of the pressure term from Eq (1) gives 

d20 Rect 2 8eta 
+ - -  A = 0 (4) ~ 5  +4a2g +~4- -  g Re 

(g=0  at ¢=  +1) 

Figure 1 
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Schematic diagram of physical system 
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f_ ~ 9 d ~ = 2  (5) 
1 

where A is a constant dependent on Re and ~t. Eq (4) was solved 
by Rosenhead 13 and Millsaps and Pohlhausen 9 using an elliptic 
function. In the present study, it was solved using a finite 
difference method. For  the limiting case of ~ and Re, Eq (4) can 
be linearized and the problem becomes quite simple to solve. 

(i) For  the case of ~ = 0 (plane-Poiseuille flow) 

g = 3(1 - ~2)/2 (6) 

(ii) For  the case of Re---~O (Stokes flow) 

2~t(cos 2ct-sin 2ct() 
9 -  (7) 

2~t cos 2~ - sin 2~ 

The velocity distributions are shown in Fig 2. The velocity is 
normalized by the centreline velocity u~. Broken and dotted 
lines show the Poiseuille and Stokes flow profiles, respectively. 
The profiles B to D were compared with the results of Millsaps 
and Pohlhausen 9, which agree with the present results. For 
accelerated flow (inflow), the boundary layer becomes thinner 
and the velocity profiles flatter than the Poiseuille parabola with 
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Figure 2 Velocity profiles in a tapered passage. Profiles B to D are 
comparable wi th  the results of Millsaps and Pohlhausen 9. A: = =0.01, 
Re=2000.  B to D: ~=0.0873 (5°), B: Re=136 (Rc=ucr/V=684), C: 
R e = - 1 7 6  ( R c = - 6 8 4 ) ,  D: R e = - 1 5 2 7  ( R e = - 5 0 0 0 )  
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increase in [Reich. The limit as IRel=---*oo yields g--*l. For  
decelerated flow (outflow) with small ct and Re or, the flow is 
unidirectional and the profiles are more sharply curved in the 
middle of the channel than the Poiseuille parabola. When Re 
exceeds a critical value, however, there are certain regions in the 
cross-section where 9 < 0 (curve A) and the solutions presented 
are not valid. 

Heat  t r a n s f e r  

If the viscous dissipation and axial heat conduction in the flow 
direction are neglected one finds the simple form of the energy 
equation to be 

0T x 0 2 T  
u - -  = ( 8 )  0r r 2 002 

The wall is heated from r--  r 0 to r = 0 for inflow and from r--  r o 
to r = oo for outflow. The following dimensionless variables are 
introduced: 

= r/r o = e x p ( -  ~t) (inflow) (9a) 

--exp(ctt) (outflow) 

7`= ( T -  T02 (9b) 
qoro ~ 

where t = 0  for ~= 1 and t---, ~ for £---*0 for inflow or r---, oo for 
outflow. Substituting Eq (9) into Eq (8), we obtain 

07` o27 ̀ 
]Re]Pr g(~) 0t = 4 ~ (10) 

Since Eq (10) is linear, the temperature profile for the prescribed 
wall heat flux can be obtained from the fundamental solution. 
Therefore, the initial step is to solve Eq (10) with the boundary 
condition of OT/O~ = _+ 1 on the wall. Since the wall heat flux is 
obtained using the temperature gradient in the fluid at the wall, 
q= -2r-l(OT/O0)o_+~, then 0I"/0~= _+1 corresponds to 
q oc 1/r. 

Heat  f lux  qoc 1/r on bo th  wa l l s  

Eq (10) is identical to the energy equation of laminar heat 
transfer in a parallel channel except for the difference in the 
velocity profile g(¢). In this case, the heat flux can be expressed 
as q=qo/L The boundary conditions are 

t = 0 ( £ = 1 )  l ( t , ~ ) = 0  

07` (11) 
t > 0  ~ = + 1  - - = _ _ 1  

0~ 

N o t a t i o n  

C, Constant obtained from Eq (19) 
D Local hydraulic diameter = 4rot 
g Dimensionless velocity = u/u m 
h c Heat transfer coefficient 
Nu Nusselt n u m b e r -  hcD/2 
Nu o Fully developed Nusselt number 
P Static pressure 
Pr Prandtl number 
q Heat flux 
qo Dimensional constant of heat flux 
r Radial coordinate 

Dimensionless radial coordinate 
r o r value at start of heating 
Re Reynolds number = umD/v 
t Dimensionless variable defined by Eq (9a) 
T, 7` Dimensional and dimensionless temperature, 

respectively 

T i Inlet fluid temperature 
Tin, 7̀ m Dimensional and dimensionless mixed average 

temperature, respectively 
Tw, 7̀w Dimensional and dimensionless wall temperature, 

respectively 
u Radial velocity 
u~ Centreline velocity 
u m Mean velocity 
Y,. Eigenfunction 
ct Half angle of tapered passage 
ft, Eigenvalue 
5 Arbitrary real number 
2 Thermal conductivity 
0 Angular coordinate 
rc Thermal diffusivity 
v Kinematic viscosity 

Dimensionless angular coordinate = 0/~ 
p Density 
q~l Constant 
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It is well known that the heat transfer coefficient will approach a 
limiting value for a sufficiently large value of t, and the 
temperature profiles will tend to some similar shape. The similar 
temperature profile at sufficiently large t will be denoted by T2. 
The solution for T is written as 

T =  T~ + 7"2 (12) 

where Tt is simply the difference in the temperature profile after 
T2 is subtracted from T, and it will approach zero at a 
sufficiently large value of t. Since Eq (10) is linear, it can be 
applied separately to T~ and 7"2. We thus obtain 

#2"F2 03)  iReIPr g(~) 8oTt2 =4 C3~2 

For sufficiently large values of t, the temperature rise 87"/0t is 
constant. Then 

7"~ = Ct + ~b,(~) (14) 

By integrating Eq (10) across the cross-section from ~ = 0 to 1, 
we obtain 

fo ~l ~7" IReiPr g ( ~ ) ~ d ~ = 4  (15) 

After substituting Eq (14) into Eqs (10) and (15), we find 

4 
- -  (16a) 

C-iRelPr c~ 

, . ,  d2q~, ( + l , d d ~ - = + l )  g t~ )=~ 7 -  \ ~ =  _ (16b) 

In order to obtain the solution T~, let T~ = R(t)O(~), and the 
separation of variables gives 

dt + R = 0  (17a) 

d20 
d~ ~ 4-flg(~)O = 0 (17b) 

The application of the boundary conditions for 7" and T2, Eqs 
(11) and (16b), leads to the requirement that 

8~F~/~?~=O at ~=_+1 (18) 

By the integration of Eqs (17a) and (17b), we find 

_~ /4ft. \ 

where ft. and I1. are the eigenvalues and eigenfunctions obtained 
from Eq (17b). The constant C. is calculated from the equation 

i i  dPlgY"d~ 
C, - (19) 

l gTn 2 d~ 

There f'is written as 

{_ 4fl.t ] 4 
i"(t, f f)=Z C.Y.(~)exp I I I"~1 ' ' l R d P r j + ~ t + 4 9 x ( ~ )  (20a) 

1 

or 

7"(~, ~)= ~ C.Y.(~)~ 4ft. 4 ~- ln~ + ~b ~ (~) (20b) 
1 RePr~ RePrct 

After multiplying Eq (20b) by g(~) and letting ~=1, an 
integration from ~ = - 1  to 1 yields 

f l gqSl d ~ = 0  (21) 
-1 

The local heat transfer coefficient h c and Nusselt number are 
defined as 

q Nu = heD (22) 
hc=-rw-T m ' 2 

where T w is the wall temperature (~= ___ 1) and T m is the bulk 
temperature of the fluid expressed as 

Tin-" ~ - rOs~ (23) 

f ' urdO 1 

The use of the dimensionless form of the temperature defined in 
Eq (9b), and D=4r~, with q=qoff, yields 

4 4 
Uu=~.w_,~r n , Tm-RePrclni"  (24) 

Upon substitution of Eqs (20a) and (20b) into Eq (24), one finds 

4 
Nu (25) 27 C,Y.(1)r-4a"/(Reer~) +d~l(1) 

For ~--~0 (inflow) or ~---.~ (outflow), the Nusselt number 
converges to a value independent of L It is called the 'fully 
developed' Nusselt number in the present study and is 
represented by Nu o. It is obtained using 

Nuo=4/gpl(1) (26) 

For particular cases, Nu o can be easily obtained as follows. 
(i) ~ = 0  (parallel channel); combination of Eqs (6), (16b) and 
(21) yields 

~4 3(2 39 (27) 
q~L = - 8  q 4 280 

Nu o = 8.235 

(ii) Re a - - ~ - ~ :  combination of Eqs (16b) and (21) with 0=  1 
gives 

~2 1 
4) a - 

2 6 

Nuo= 12 (28) 

(i/i) Re---*O (Stokes flow): combination of Eqs (7), (16b) and (21) 
yields 

=B//~2d_ cos 2 ~ \  5B 2 _ [ 3  3 \ 1  
qh tY 
Nu o = 4t{5B216 + B(5~2/8 - 1 ) + 1/2} (29) 

1 
B -  

(1 - tan 2a)/2a 

Fig 3 shows the relation between the Nusselt number and 
In (~/(Re Pr a) with Re cl as a parameter for small ~. The solid 
and broken lines in the figure are for the cases for inflow and 
outflow, respectively. Hereafter, the Prandtl number is fixed as 
0.72, which is the value of air. With an increase inlRel~, the 
Nusselt number increases for inflow and decreases for outflow. 
The Nusselt number decreases with increases in In ~/(Re Pr c~) 
and converges to a fully developed value. In the present study, 
we call the region where the Nusselt number is dependent on ~ as 
the 'thermal entry region'. 

Values of the eigenvalues and eigenfunctions are presented in 
Table 1. The eigenvalues and eigenfunctions for the case of 
Re a---,- ~ can be obtained analytically. Upon integration of 
Eqs (17b) and (19) with O = 1, we find 

fin = n27~2 

/1.=cos nn~ (n= 1, 2 . . . .  ) (30) 

2 
C . = ( -  1) "+l - -  

(n~) 2 
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Heat f lux  qo~t  ~ on both  wal ls  

Since the heat flux is expressed as q=qo r~, the boundary 
conditions can be written as 

- - =  ___ e-~(,~+ 1)~= _{_~+ 1 

at = ___ 1 (outf low) 

- - =  _+ e+=~+ ~' = _+~+~ (31) 

at ~ = + 1 (inflow) 

After rewriting T(t, ~) in Eq (20) as 7"0(t, ¢) the dimensionless 
temperature profiles with wall heat flux q ocr ~ can be obtained 
from the formula 

7"(t, ~)= "I'o(t, ~ ) -  ~(6 + 1) 

x e -~(~÷~ 7"o(t-~, ~)dz (inflow) 

7"(t, ~)= "Fo(t, ~)+ ~¢(6 + 1) (32) 

x e ~O÷~ To( t - r ,  ~)dr (outflow) 

After integration of Eq (32), the transformation of t into ~ yields 
co 

7"(~, ~)= ~, C. Y.(~)i'-4,0.~(Re Pr ~) 
1 

+ E c. x ( l + 6 ) R e P r c ~ + 4 ~ . J  

~" (1 +6)Re Prc~ 

x ~(1 +~)-Re P-~ =~+-4fl.J ~ 

1 
4 ff~+ 1 _ 1)+ q~(O?+ ~ (33) 

(1 +6)Re Pr ct 

100 r ~ ~ "r-'-'T--V--T r 

~ - ~  ~ , ~  

- -  I n f l ow  . . . . . .  y / # #  

Ou t f l ow  R e e ~ - 0 ~ / / /  

= 1 0  / 
= 18.5 

0.001 0.01 0.1 1.0 

In 7~Re Pr (~ 

Figure 3 Relation between Nu and In r /RePr~  with heat flux 
qoc 1/r  on both walls for small 

T a b l e  1 Eigenvalues and related constants with both walls heated 
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When 6 = - 1, the third term of the right hand side of Eq (26) 
reduces to 4 In ~/(Re Pr cO. The Nusselt number is obtained as 

N u = 4 / [  ~I C.Y.(1)~-4~.I(Re P~'- I -~ 

( 4,6. + ~  C,Y.(1) 
+~(1 +6)Re-Pr c¢+4fl. , 

I ( l+6)Reerc~  ~ ..F ~1 (1)] (34) 
× ((~ +~m~ PTE~B.-J 

For  the case of  6 >  - 1  at ~---~0 (inf low) or  6 < - 1  at i--~oo 
(outf low), Eq (33) reduces to 

4 
Tff, 0 = (35) 

(1 +6)Re Pr cl 

-20 

-10 

- 0 . 0 0 2  

I I i I I I 
- 3 0  - 2 0  - 1 0  

a 

i I i 

I n f l ow  
3O 

2O 

Nuo 

o I 
5 10 15 

15 

Nuo 

10-  

- 1 5  - 1 0  - 5  0 

b 

Rec~ = 12 ~ ~ . ~ - ~ , ~  

.5 

Out f l ow  

t I I l I h 
10 20 30 

Figure4 Effect of 6 on Nuo for small = with Re ¢ as a parameter: (a) 
inflow; (b) outflow 

~=0 

n f in CnYn(1  ) f in 

Re = = - 2000(~ = 1.0) Re :¢= 18.5 

CnY,( 1 ) fin CnYn(1 ) 

1 12.2527369 -0 .222194 
2 45.9512137 -0 .072519 
3 100.9465197 -0 .037364 
4 177.1635513 -0 .023283 
5 274.5076115 -0 .016116 
6 392.8602413 -0 .011927 
7 532.0782972 -0 .009245 
8 691.9937038 -0 .007413 
9 872.4134248 -0 .006108 

10 1073.1195299 -0 .005127 

10.2152081 
40.7878004 
91.5477671 

162.3116433 
252.9209723 
363.2376661 
493.1278875 
642.4500057 
811.0482207 
998.7497133 

-0 .197778 
-0 .050974 
-0 .023636 
-0 .013942 
-0 .009363 
-0 .006814 
-0 .005237 
-0 .004186 
-0 .003447 
-0 .002906 

15.4346171 
55.5509695 

120.2866612 
209.5349664 
323.1461701 
460.9286537 
622.6485461 
808.0301953 

1016.7562494 
1248.4677830 

-0.218361 
- 0.083379 
- 0.046592 
- 0.030638 
- 0.022066 
- 0.016844 
- 0.013381 
- 0.010962 
- 0.009182 
- 0.007830 
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X X  . - ; - "  ./1>" . . . .  i 
i i.... ~ 1.0 / , ' \  ~ -  ~ ~ , , ~ ' /  

. -  .> . ' -~ "  . o - l O  . 

. ; ~ ¢ - . ~ ~  ~ Re~:-SO " - - 

0.001 0.01 0.1 1.0 

In ~ /Re Pr 

Figure5 Plot of dimensionless wall temperature against ln r/Re Pr = 
for case of constant heat flux (6 =0), with both walls heated, for small 

0 , 2  , , T r I i 

T- = 0 . 6  / 

7 = 0 .8  / 

,"11  
,;//I 

F ' H . ,  ,' . /- ' /"1 
L j "° . ; t ' l l  I 

1.0 0 1.0 

Figure 6 Temperature profiles in fluid with constant heat flux (both 
walls heated) for case of c~ = 0.1 and Re = - 1000. Broken lines are the 
profiles when wall temperature is decreasing towards r ~ 0 

ie the temperature profile becomes uniform in this region. In 
other regions of 6, the temperature profile is dependent on L 

When 6 ~ < - 1  for inflow and 6 > ~ - 1  for outflow, 
~-4#,/(RePr~)-1-~ always converges to 0 as ~---*0 for inflow and 
F---, oo for outflow. Then the fully developed Nusselt number 
N u  o is obtained as 

(1 + 6)Re Pr ct 
N U o = 4 / ~  ~ C.Y.(1)  _ ~ ~-+q51(1)'~ (36) 

/ [ !  ( l + 6 ) R e r r ~ + 4 f l ,  ) 

Plots o fNu o against 6 are shown in Figs 4(a) and 4(b) for inflow 
and outflow, respectively, for small ct with R e  ct as a parameter. 
The Nusselt number  N u  o is a monotonically decreasing function 
for inflow and a monotonically increasing function for outflow 
with respect to 6, as shown in the figures. For  inflow, N u  o 
increases with increase in IRel= for 6~< - 1  and decreases for 
6 > - 0.3. When 6 =  - 1, N u  o increases from 8.235 to 12 as IRel= 
increases from 0 to oo. For  6 >  - I, there are values of Re  ct 
which yield - 4 f l l / (Re  Pr ct) - 1 - 6 < 0 where fl~ is the smallest 
eigenvalue. This yields Nu0=0 .  

On  the contrary for outflow, N u  o decreases with R e  ct for 
6~< - 1 and increases with Re  ~ for f ig 0for small values o f  Re  cc 
However, it decreases as Re  ct approaches the critical value 
above which flow is no longer unidirectional. 

As described above, the Nusselt number  in Eq (34) always 
converges to a value including zero at F--*0 (inflow) or ~--~oo 
(outflow). This means that there is always a fully developed 
Nusselt number  for the case of heat flux q ocr 6. 

The relation between Tw and In F/(Re Pr  ~) with constant wall 
heat flux (6 --- 0) is shown in Fig 5 for small cc The solid lines and 
broken lines represent the results for inflow and outflow, 
respectively. When IRel=~ 1, the dimensionless wall 
temperature Tw increases with In ~/(Re Pro t). An increase in 
IRelct yields a lower wall temperature for inflow and a higher wall 
temperature for outflow. When IRel~ exceeds a certain value for 
inflow, the wall temperature has a negative gradient towards the 
flow direction. 

The temperature profiles in the fluid are shown in Fig 6 for the 
case of Re  ~ = - 100 for inflow with constant heat flux. The same 
trend for the wall temperature as seen in Fig 5 for large values of 
IRel~ is shown in Fig 6. It is noteworthy that the temperature 
gradient is higher in the fluid near the walls than at the wall for 
the region of ~<0.2. This is due to the decrease in wall 
temperature in the flow direction. Dey and Nath ~z have 
reported that a rapid decrease in wall temperature for 
boundary-layer-type sink flow caused the fluid near the wall to 
be hotter than the wall itself. For  this case, however, it does not 
occur because the decrease in the wall temperature is not large 
enough. 

The relation between N u  and In ?/Re Pr ct for small ~ with 
constant wall heat flux is shown in Figs 7(a) and 7(b) for inflow 
and outflow, respectively. In both figures, the solid line 
represents the case of ~ = 0, which corresponds to the case of a 
parallel channel. It is worthy to note that the Nusselt number  in 

1 O0 

lO 

r i , I r , r I I T I 

Re a 

- - 0  
. . . . . .  20  

- _ _ 1 0 0  

~ , . ~  - -  - -  - -  200  

\ k ~ - -  
\ \ 

, \ 
\ 

\ 

1 i i i k L i ~ l  I I \ L  i k i i 

0.001 0.01 0.1 1.0 

a Inr/RePrc~ 

100 

10 

i i i , I i i I i i i 

Re (x 
- - 0  

. . . .  5 
- - . - - 1 0  

" " "~"  ' "".~2 18.5 

O u t f l o w  

1 
0.001 

b 
Figure 7 

I I = I I I I I I i I i I I 

0.01 0.1 1.0 

In 7~Re Pr 

Relation between Nu and Inr/RePr~ for small ~ with 
constant heat flux on both walls: (a) inflow; (b) outflow 
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, . . 1 .  / t 
= : o  . . . . .  , . o ,  ,f 1 

- 6 0  40  - 2 0  8 16 

Re 

Figure8  Relation be tween  Re ~ and Nuo wi th  both walls  heated for 
cases of 6 = - 1  and6=0 

the entry region with constant q is higher for inflow and lower 
for outflow that in the entry region with q oc I / r ,  whereas the 
fully developed value N u  o with q = constant  for inflow lies below 
N u  o with q oc 1/r. 

The plot o fNu  o against R e  • is shown in Fig 8 with 6 and ct as 
parameters. For  the case of 6 = - 1, N u  o increases with decrease 
in R e  ~ and converges to 12 at R e  ~-- ,  - oo. For  the case of 6 = 0, 
however, N u o  decreases with decrease in R e  a for inflow and 
reduces to 0 for Re ~ <  - 62.8. 

Heat flux on one wall with the other wall adiabatic 

The calculation procedure for this case is the same as that 
described in the previous section. The temperature distribution 
can be expressed by Eqs (20)and (33), but in this case ~b 1 is 
calculated by the following equation instead of Eq (16b) 

, . ,  d2~bl 
9 [ 0 = ~ -  ~ = l : d 4 h / d ~ = l  

(37) 
~= - 1 :d~b l /d¢=0  

The Nusselt number  can be obtained from Eq (25) for 6 = - 1 
and from Eq (34) for 6 # - 1. For  the case of R e  ~---*- oo, one 
can obtain, by using the same procedure as in the previous 
section, 

Nu o = 6 

The relation between Re a and N u  o is shown in Fig 9. Similar 
profiles to those in Fig 8 are seen in this figure. The value o f  Re  
beyond which N u  o reduces to zero for inflow is smaller for this 
case than with the case of both walls heated. This is due to the 
difference of the smallest eigenvalue. 

Eigenvalues and eigenfunctions for Re ~ - -+ -  oo are 
analytically obtained as follows: 

(n~) 2 
ft. = 

4 

4 
Y.(~)=cos(nrc /2) ,  C . = ( -  1) "+1 (nrc)z, 

(n = 2m) 

4 
Y.(~) =sin(mr/2), C. = ( -  1) "+ 1 (38) 

(2n + l)2rr2' 

(n = 2 m -  1) 
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The case of constant  wal l  tempera ture  for 
in f low 

Uniform temperature on both walls 

Sparrow and Patankar  14 noted that the boundary  condition of 
constant  wall temperature for a circular pipe was identical to 
that of q oc exp(Tx ) for the fully developed region. As is pointed 
out by Walker and Rishehri 6, the boundary  condition q oc e yx 
for parallel flow corresponds to the boundary  condit ion of 
q ocr  ~/4~- 1 for flow in a tapered passage if the difference in the 
velocity profiles is neglected. The heat transfer in tapered 
passages for inflow with constant  wall temperature can be 
obtained using the results of the previous sections. We assume 
that the heat flux q can be described as q = qoh(~) where h(~) is an 
arbitrary function of ~. Instead of Eq (9b), the following 
dimensionless variables are introduced: 

[. = r/r o 

~_ T - L  
Tw- Ti 

(39) 

Upon substituting this into Eq (8), we again obtain Eq (10). By 
integrating it across the cross-section from ~ = -  1 to 1, we 
obtain (see Appendix A) 

Re Pr  ~ d•m - N u  (I - Tin) (40) 
d i  

It is assumed that a fully developed value of Nusselt number,  
Nuo,  exists at r--*0. Substitution of N u o  into Eq (40) and then 
integrating yields 

Tm = 1 - c F -  Nuo/(Re Pr =) 

N u  o ;t q=4~O (rw- Ti)~(1-- Tm)(l:r-(Nuo/Reer~)-l=~ 

where C is a constant. From the above equations, we find 6 is 
equal to - ( N u o / R e  Pr  ~ ) -  1 > - 1. Accordingly, we obtain 

4ft. 1 
1 - 6 = - - -  ( 4 f t .  - Nuo) 

Re Pr  a Re  Pr  

Here a f t , -  N u o  must be larger than zero for all n. If not, N u o  
becomes zero and it yields 6 = - 1, which means that N u  o will 
not be zero as described in the previous chapter. 

The value of N u  o is obtained by the substitution of 6 into Eq 
(34): 

N u  o NUo=4 / [ -~C .Y . (1 )  +q~,(1)] (41) 
/ L  i (4fl.-Nu0j d 

where q~l is obtained from Eq (16b). 

I r ~ T T 
q ~ l / r  ~ c ~ ± O  

. . . .  q = c o n s t a n t  _ 12 - - ' - -  q = co t  

c~= I a--~O 
C~=1 

- 1 0 0  - 6 0  - 2 0  8 16 

Re 

Figure 9 Relation between Re ~ and Nu o with one wall heated and 
the other wall adiabatic for cases of 6 = - 1 and 6 = 0  
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Here, we consider the case of R e  a---, - ~ .  From Eq (30) 

- ~  C.Y . (1)  N u °  
( 4 f t , -  Nuo)  1 

1 4 2 c o t ( x / ~ o / 2  ) 
- ~ ( 4 2 )  

3 N u  o x / ~ o  

Solving the above equation, we obtain (see Appendix B) 

N u  ° = n2 = 9.8696 (43) 

Uniform temperature on one wal l  w i th  the other wal l  
adiabatic 

The following equations are obtained corresponding to the 
previous section 

'Fm: 1 - c ~-  Nu°/(2Re Pr a) 

q ~ ~-(Nuo/2Re P r e ) -  1 (44) 

N u o = 4  - ~ C . Y . ( 1 ) ( 8 f l  _ N u o ) + ~ b , ( 1 )  
,, 1_ 1 

where 01 is obtained from Eq (37). For  the case of Re  or---, - oo, 
we obtain 

N u  o = n2/2 = 4.9348 (45) 

Concluding remarks 

Laminar heat transfer in a tapered passage is different from that 
in a parallel channel because of the dependence of the velocity 
distribution on the Reynolds number and taper angle. In the 
present analysis, temperature distributions and Nusselt number 
are obtained for the prescribed heat flux of q ~ r ~ on both walls 
and on one wall with the other wall adiabatic. The behaviour of 
the fully developed Nusselt number,  Nuo,  depends on the value 
of 6. For  inflow, N u  o increases for 6 ~< - 1  and decreases for 
6 > - 0 . 3  with an increase in R e  ~. On the contrary, for outflow, 
Nuo decreases for 6~< - 1 with R e  ~ and increases for 6 > 0 with 
Re ct; however, it decreases for 6 > 0  as Re  ct approaches the 
critical value above which flow is no longer unidirectional. 
Accordingly, for inflow with constant heat flux, Nuo converges 
to a lower value than that for the case of a parallel channel. If 
Re ct satisfies - 4fl~/(Re Pr  a) - 1 - 6 < O, N u  o converges to zero. 

The fully developed Nusselt number with constant wall 
temperature is easily calculated by using the eigenvalues and 
eigenfunctions which are obtained from the appropriate 
prescribed heat flux boundary condition. 
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A p p e n d i x  A: D e r i v a t i o n  of  Eq (40)  

Integrating Eq (10) from ~ = - l to 1 and converting t into ~, we 
obtain 

f i 1 I~'/ '11 3 T d ~ = 4 r  ~ -  (A1) Re  P r ~  - i g O r  - l  

Since the wall heat flux is written as 

1 f0T   tTw- 7) 

we obtain 

qroa 
~ ( 8 ~  j_+l - 2 (Tw-  Ti) (A2) 

Substitution of Eq (A2) into Eq (Al) yields 

d 11 2qroc~ 
g T d ~ -  (A3) Re  Pr ct ~r  .)-1 2(Tw - Ti) 

By using the dimensionless bulk temperature and the definition 
of the Nusselt number 

Tm=~ foTdL N u  =4rc~ q 
)~ (T w -- Tm) 

we obtain from Eq (A3) 

dT  m / N u \  T m 
Re Pr c~ ~-r  = ~  ~ - }  T w -  

T . -  Ti 

N u  
- (1  - -  "Fro) ( A 4 )  

We now introduce the fully developed Nusselt number N u  o. 
Integration of Eq (A4) yields 

~r m = 1 - C r  - Nuo/(Re Pra)  (A5) 

Here, N u  o is expressed as 

4raq 

N u  o - )o(T w - Tm) 

Then 

N u o 2 ( T w -  Tm) NUo2(Tw - -  Tii)(1 - -  'Fm) 
- ( A 6 )  

q -- 4rot 4roCff 

Substituting Eq (A5) into (Eq (A6), we obtain 

Tw -- Ti ~ . - ( N U o / R e e r c o -  1 q = C N u o 2  
4ro~ 

OC r -  (N Uo/Re Pr ~)- 1 (A7) 
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Appendix B: Derivation of Eq (43) 

The first term of the right hand side of Eq (41) is written as 
ao 

- ~  C.Y.(1) Nu° 
1 (Nu 0 -- 4ft,) 

2 Nu o 
1 (nn) 2 ( 4n2n2- Nuo) 

= ~  -n~-+ (n2_ N~o/4rc2 )- (B1) 

The right hand side of Eq (B1) becomes 

~ (l/n) 2 = ~2/6 
1 

7g 2 
1 _ 2re 2 ~ cot(Nx/~o/2) 

~ n 2_ Nuo/4rc 2 Nu o x/ Nuo 1 

Then we obtain 
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® Nu o 
- ~  C. Y.(1) 4fl~-Nuo 

1 4 2 cot(Nv/~0/2) (B2) 
- 3 ~ N u  o Nx//~o 

This corresponds to Eq (42). Substituting Eq (B2) into Eq (41), 
and considering that ~bl(1)= 1/3, we obtain 

4 4 2 

x/ Nuo J 

From Eq (B3), we obtain 

c o t ( x / ~ o / 2 )  = 0 

Therefore 

Nuo=(2m+l)2x 2 (m=0, 1,2 . . . .  ) (B4) 

where 4 f t . - N u  o must be larger than zero. Since the smallest 
value of ft. = rt 2, m must be zero. Thence we obtain 

muo=/r 2 

Book review 

Heat Conduction 
S. Kakac and Y. Yener 

This is a good book on heat conduction and is intended as a 
textbook for senior/first year graduate students in heat transfer 
and also as a reference for heat transfer engineers. 

The book is similar in some respects to the text by P. J. 
Schneider. Extended surfaces and steady-state one-dimensional 
cases are covered, for example, in both books. Also the Heisler 
charts are given and the book displays other features that are 
helpful for engineering practitioners, such as thermal properties 
of some solids. 

Good features of the book include an appropriate 
mathematical level and the good coverage of the major 
conventional topics. There is also an excellent chapter on 
further methods of solution besides the usual methods of 
separation of variables, integral transforms and Laplace 
transforms. These include Duhamel's method, the integral 
method, the variational method and methods for solving phase 
change problems. The writing style is good and the book is easy 
to read. Unfortunately the type design of the letters is not one of 
those commonly used in books. 

The book shares some weaknesses with others on heat 
conduction and boundary value problems. One of these is the 
lack of explicit numerical evaluation of infinite series. 
Associated with this are occasional inaccurate statements 
regarding convergence. For  example, on p. 202 it is stated that 
the series converge rapidly and satisfactory accuracy can be 
obtained with only a few terms; unfortunately one of the given 
equations cannot always be evaluated without using a great 
many terms. Another weakness is the omission of the Thomas 
algorithm for solving a tridiagonal set of algebraic equations in 

the finite difference chapter. It is only fair to note that no other 
advanced heat conduction book includes this important 
algorithm. Instead the authors mention solving the matrix 
equation 

AT=C 

by using the inverse A -a,  to obtain for the unknown 
temperature vector, T, 

T=A-1C 

According to numerical analysis authors (see J. R. Rice, Matrix 
Computations and Mathematical Software, McGraw-Hill, 1981, 
p. 23) this an inefficient approach. 

On the whole, the book is certainly a welcome addition to the 
heat transfer literature and can be very effectively used by both 
students and practicing engineers. 

James V. Beck 
Heat Transfer Group, 

Department of Mechanical Engineering, 
Michigan State University, 

East Lansing, MI 
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